If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+20x-76=0
a = 1; b = 20; c = -76;
Δ = b2-4ac
Δ = 202-4·1·(-76)
Δ = 704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{704}=\sqrt{64*11}=\sqrt{64}*\sqrt{11}=8\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-8\sqrt{11}}{2*1}=\frac{-20-8\sqrt{11}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+8\sqrt{11}}{2*1}=\frac{-20+8\sqrt{11}}{2} $
| 0.4×9c=0.6 | | 2(4-5n)+7=95 | | -6=1x | | Z=4+2x | | 3x-9+30+24=180 | | 7(v-2)-6=-3(-8v+6)-5v | | 32+x=88 | | 7x+4=-3+5x+21 | | -3(4n+6)=6n | | 4y+6+7y-7=20y-11 | | G=-3x+4 | | 9n+4n(2n)=68 | | -5y+33=-3(y-9) | | -24=1-6k+5 | | 2+2x-10=14 | | (4y+6)=(7y-7) | | 0.25=0.125(m-7) | | 93-y=259 | | x^-3-(6)=14 | | -3=-6x+3(x-3) | | 9n-12=52+n | | Z=-1-4a | | 2(n)+8=5(n)-10 | | 6x+7(3x-8)=-110 | | -9=18k | | 180=x+x/3+x-16 | | x-0.07*x=100 | | Z=2x | | 9.5=6x | | 9x^2=35x+4 | | S=5t÷45 | | -24+m=-2m+8(m-8) |